GPS Status and Results for the 2003-2004 AASI Campaign

John G Sonntag EG&G / NASA Wallops Flight Facility

Reduction of GPS Data

- Step 1: Initial QA and archiving in the field
- Step 2: Determination of ground station position
 - JPL/Gipsy software in point-positioning mode
 - Resulting position accurate to 1-2 cm in height
- Step 3: Detailed editing of ground and aircraft mission data
 - Form geometry-free linear combinations of dual-frequency data types (L1, L2, P1 and P2)
 - Screen time series of these combinations for discontinuities
 - Repair cycle slips if possible, delete data only where absolutely necessary
- Step 4: Precise trajectory computation
 - Phase ambiguity determination
 - Modeling and estimation strategy for tropospheric refraction

Overview of the Four Flights

- AMSR-E sea ice concentration from 041021
- Differing altitudes
 - 030823 high
 - 041014 high
 - 041015 low (300 m)
 - 041024 high
- Maximum baselines ~ 1500 km
- Expect height accuracies of 20-30 cm

- Mission aborted after single 30-minute line
- High confidence in precise trajectory
 - Good satellite geometry throughout
 - Very clean raw data
- No gaps!
- No further work needed

- Major equipment failures during this flight
- GPS rack on P-3
 - Intermittent power failures on both redundant GPS units through mission
 - Problem traced to bad power connection after the flight
- Ground station
 - Lost power for several hours
 - Data ends after about ½ of data lines completed
- No precise trajectory possible

- 4 data lines completed
- Precise trajectory for the mission has a 640 sec gap in easternmost line
- Gap is due to poor GPS satellite geometry during the ~11 min period
- May be possible to reduce the extent of the gap

- 8 data lines completed
- Precise trajectory for the mission has a 949 sec gap in one line
- Gap is due to poor GPS satellite geometry during the ~16 min period
- May be possible to reduce the extent of the gap

Why the Gaps... PDOP!

Further Work

- A precise trajectory is released when the following conditions are satisfied:
 - Average RMS for all phase observations is low, generally about 1 cm or less
 - No large discontinuities in point-to-point RMS exist
 - Phase biases are resolved satisfactorily
 - Estimated tropospheric refraction parameters converge to reasonable values
 - Any gaps longer than a few sec are understood
- For the three missions analyzed, all these criteria have been satisfied
- May be possible to reduce the length of the long gaps, perhaps by selectively lowering the elevation cutoff angle of certain satellites during the gaps